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ABSTRACT

An approximate analysis of the response in the funda-
mental mode of any simple single span beam with tuned visco-
elastic dampers attached at discrete locations to a harmonic
loading with arbitrary spatial distribution is derived. It
is shown that, to a good degree of approximation, a single
expression can be made to represent the response in the funda-
mental mode of a beam with any boundary conditions, provided
that certain effective mass and stiffness parameters are
defined for the beam-damper configuration. Comparisons are
made with experiments and with an exact theory, subject to
the limitations of the Euler-Bernoulli beam equation, of the
response and damping of a cantilever beam having an isolated
harmonically varying load at the free end and a clamped-
clamped beam, with a tuned damper at the center, under shaker
excitation. Good agreement between the exact and approximate
theories and the experiments is demonstrated. Conclusions are
drawn concerning the equivalent damping introduced into the
simple structure by the tuned dampers and the damper natural
frequency needed for optimal damping.

This abstract is subject to special export controls and
each transmittal to foreign governments or foreign nationals
may be made only with prior approval of the Metals and Ceramics
Division (MAM), Air Force Materials Laboratory, Wright-Patter-
son Air Force Base, Ohio 45433.
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LIST OF SYMBOLS

A Resonant amplification factor (shaker excitation)

exp Exponential function

E Young's Modulus for beam material

F. Force transmitted back to structure by j th damper
unit

i Square root of minus 1

I Second moment of area of beam cross section

Total number of dampers on beam

k Real part of stiffness of damper unit

L Length of beam

m Tuning mass of damper unit. Also dummy subscript

P(x) Amplitude of transverse applied loading

p nn th term in expansion of P(x) as series of normal

modes

P esonant amplification factor (force excitati.'n)

t: Time

W(x) Amplitude of transverse displacement of beam

V n th term in expansion of Vx) as series of normal
modes

x, Station along beam

x. Station of j th damper
a

a See equation (22)

0 See equation (23)

y See equation (24)

r kL 3/E, - non-dimensional stiffness parameterr1

r See equation (12)e

a Dirac Delta function

a x/L
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j .j/L

Loss factor of viscoelastic spring of damper unit

Effective loss factor of beam-damper configuration
[= (Q2-1)-1/2]

Mass per unit length of beam

(ljw2L4/EI)1/4 - frequency parameter

(Ijw2L 4/EI) i/4 - n th eigenvalue of undamped beamnn

n n th normal mode of undamped beam

m/pL - non-dimensional mass parameter

e See equation (11)

wCircular frequency

wn Natural circular frequency of n th normal mode of
undamped beam

WD - (k/m) 1/2 - natural frequency of damper unit

Suffixes:

D subscript referring to damper

e subscript referring to reduction of data for all
boundary conditions

j subscript denoting j th damper

n subscript referring to number of normal mode

s subscript referring to effective damping for beam-
damper system
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I. INTRODUCTION

The tuned damper, consisting of a spring-dashpot combina-

tion (or a viscoelastic spring) connecting a mass to a point
on a vibrating structure, has recently been examined from the

point of view of a possible application to the damping of com-

plex structures exhibiting closely spaced resonant frequen-

cies [1, 2]. Since analysis is usually difficult in such

cases investigations of the effect of tuned dampers on the

response of simpler structures have served as essential prelim-

inaries. Such analyses have been carried out by Snowdon [3]

and others [4-7].

However, although exact solutions within the framework
of the Euler-Bernoulli equation have been obtained for several

beam-damper configurations, under various harmonic loadings, no

attempt has apparently been made to derive a general theory,

applicable equally to all simple beam structures and harmonic

loadings. Such a theory is developed in this paper. An approx-

imate theory, applicable for the fundamental mode primarily, is

obtained for a simple beam with tuned dampers at various points

and subjected (i) to a harmonic loading of arbitrary spatial
dependence and (ii) to displacement (shaker) excitation at the

support(s). It is shown that a single expression can be made

to represent the transmissibility for all boundary conditions.
Comparisons are made with exact solutions obtained for a

cantilever beam, harmonically loaded by a force at the free end,

and with a tuned damper at the free end [4] and for a clamped-

clamped beam with a tuned damper at the center, subjected to

displacement (shaker) excitation at the supports [5]. The exact

and approximate theories are shown to be in good agreement.

Experimental investigations of cantilever and clamped-

clamped beams, with an isolated tuned damper at the free end

and at the center respectively, are described. It is shown that

the main conclusions of the various theories are borne out.
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II. APPROXIMATE ANALYSIS OF TUNED DAMPERS ON SINGLE SPAN
BEAM UNDER FORCE EXCITATION

Consider a single span beam of length L with tuned visco-
elastic dampers of complex spring stiffness k(l+in) and mass m
at a number of points x = x. (j = 1 to J) as in Figure 1. The
amplitude of the harmonic 3 force transmitted back to the
structure (F.) by the damper at the point x. is readily obtained
[4, 51 by solving the equation of motioR of the mass m for
the damper subjected to a harmonic input displacement of ampli-
tude W(xj) at the point of attachment to the beam. Then:

- mW 2 W(x.)6(x - x.)
F. = - J _JL_ (1)
1 1 - mW2 / k(l + in)

The Euler-Bernoulli equation for the beam under the action of a
harmonic loading of amplitude P(x) is therefore written:

J
EI(d'W/dx') J W m W(x )6(x-xj) = P(x)

l-mW2 /k(l+in) j=1 (2)

If W(x) and P(x) are now expanded as series of normal modes of
the undamped beam, assumed to be known, then these modes must
satisfy the homogeneous equation of motion;

d4n(x)/dx4 - (pW2/EI) I n 0 (3)

If use is made of this fact, equation (2) may be written:

J (UW2  pW 2 )W 4 (x/L) - mW2 1 6(x-x.) JW D (x /L)
n=l n n n 1-mW 2/k(l+in) j=l = mlm m

Y non Dn(x/L) (4)n=l 1

00

where W(x) = I W n(x/L) (5)
n=1

and P(x) = I P n (x/L) (6)
n=l n

2



If we now factor all the 
terms of equation (4) by n (x/L) and

integrate with respect to x from 0 to L, then:

(U2 - U2) Wn 0 2 L - P n J 02(x/L)dx

2 j
mI m $(x./L) I W 0 (xj/L) = 0 (7)

1-mW2/k(l+in) j=l n 3 m m

use being made of the orthogonal property of the normal modes
i.e.

Jm (x/L) 0n(x/L)dx = 0 (m # n) (8)

In this particular investigation, one is interested primarily
in the response in the vicinity of the fundamental mode of
the beam, for which n = 1. Therefore:

PIL4/EI
W1  = -()

(4 *IAj) I (Wm/W)4 m(Aj)~~~ ~ _ 4...jlm=l ..... .

j1

0

It is clear from equation (7) that, since for any simple beam

2 >> W (n>l), W << W in the vicinity of the first resonant

frequencies of the beam-damper system. Therefore only the first
term in the series with respect to m in equation (9) need be
retained so that, at the point of maximum amplitude where fl=l,

EIt 4 W
S 1 (E) 4  (10)

P 1 LW 1 - / -

l-pe (E/{i) 4/r e (l+in)

3



where * e is an effective mass parameter defined by

J
*e = ' p D(Aj) / J (A)dA (11)
e j=l 1 0

J 1i
and re = ( / D(A)dA (12)

j=l 1 0

is an effective stiffness parameter. It has therefore been
shown that the theory of the response of any simple beam, for

which the resonant frequencies are sufficiently well separated
for certain approximations to be made, can be reduced to a

single expression if appropriate effective mass and stiffness
parameters are defined for each particular set of boundary
conditions. Certainly, the integrals and summations in equa-
tions (11) and (12) are readily evaluated for most cases using
the tables of normal modes given by Bishop and Johnson [8].
Some of the integrals and summations are given in Table A for
a number of boundary conditions.

It will be seen that equation (10) is the same as that
obtained if one had assumed that the beam was uniformly covered
by a distribution of tuned dampers with the effective mass
parameter 4_ now representing the true mass ratio for the dis-
tributed dampers i.e. the ratio of the total mass of the
dampers to the total mass of the beam [9]. This is apparent
from equation (11) whenj approaches infinity. Similarly, re
is seen to be equal to L /EIE times the total stiffness of
all the damper springs in parallel. The theory of the beam
with distributed tuned dampers has already been developed [9, 10].

On the basis of equation (10), the amplitude IWI of the
response can readily be determined for various specific values
of *e' re and n as a function of / i or ( / I)2. Typical

araphs of (EIq4/PIL4) jWI are plotted against ( / i)2, which is

proportional to the frequency w, in Figures 2 and 3. Further
data and graphs are available [91 for other values of n.

From the response spectra which have essentially two
resonant peaks, a measure of the performance of the dampers
in damping the beam is given by an arbitrarily defined effec-
tive loss factor n , defined by ns = (Q2-1)-1/

2 , where Q is

the amplification factor of each resonant peak. Computed
values of Q at resonance are given in TableIl. Typical graphs
of n against the effective stiffness parameter r e are plotted
in Figure 4 for the high and low frequency resonant peaks.
Further data for other values of e are available [9].

4



Ar the point where the two resonance peaks are of equal
amplitude, the dampers are said to be optimally tuned [3, 6].
This is the point at which the curves of n5 against F cross
over in Figure 4. At all other values of F , one or other
of the two resonance peaks will have a highe? amplification
factor Q than at the point of optimal tuning. Typical graphs
of the value of ns for optimally tuned dampers are plotted in
Figure 5 against the parameter * e The data is taken from
TablellI, where values of n and re are given for various *

and n for both the exact theory (discussed later) and the
present approximate theory. These tabulated values are taken
from graphs such as Figure 4. A cross plot of the data given
in Figure 5 gives n, as a function of n for various * e' and
this data is plotted in Figure 6.

The values of r at which the dampers are optimally
tuned are also of grgat interest since, from the definition
of r e:

F (kL3/EIE) j cZ(Aj) /
e 1 ~J=l j1

= (W D/W )2 e

WD/wl (Fe/e) /2 (13)

It is, therefore, a simple matter to determine the ratio of
the natural frequency wD of the damper to the natural fre-
quency w1 of the undamped beam from the values of F at the
point of optimal tuning. A typical graph of wD/Wl eagainst

*e is shown in Figure 7. Of more interest, however, is the

graph of (wD/Wl)(l+ e)i/2(l+n2)I/4 , for the exact and approx-

imate theories, against * e plotted for several values of the
damper loss factor n in Figure 8. This empirically derived
representation collapses all the data on to a single straight
line so that the relationship between wAD/W 1 and * e and n is:

WD/ W = (l+pe)-1/2 (1+2)-1/4 (14)

Equation (14) implies that, if *e and n are known, it is pos-
sible to determine the natural frequency w D of the damper
such that the beam-damper system is optimally damped. This
simple relationship should therefore be of value for simple
systems exhibiting widely separated resonance frequencies and
may serve as a guide for more complex structures to which it
is desired to attach tuned viscoelastic dampers (See [2]).

5



III. APPROXIMATE ANALYSIS OF TUNED DAMPERS ON SINGLE SPAN

BEAM UNDER SHAKER EXCITATION

If U is the amplitude of transverse displacement of

any point x of the beam relative to the clamped end or ends

(the analysis must clearly be limited to cases where at

least one end of the beam is attached to the shaker), the

equation of motion may be wtitten:

EI(d 4 U/dx4) - UW 2 [U+X]

- M [U(xj)+X]6(x-xj) = 0
1-mW2 / k(l+in) j=l

(15)

which may also be written:

EI (d4U/dx
4 ) -,w 2 U mw2 J U ( )S (x-xj

1-mw2 / k(l+in) j=l

2 + mW2X J

-PW2X + 1 6(x-xj) (16)
1-mw2 / k(l+in) j=l

This equation is clearly different from equation (2) but may

be solved in much the same way. Again, we replace the

response U(x) by the appropriate expansion in normal modes.
Then:

U(x) = U n Pn (x/L) (17)
n=1

and, using equation (3) which applies equally to this case,

equation (16) becomes:

6



(n- I) Un (x/L) - m 2 L4 /EI I U m m (X/L) 6 (x-xj)
n=1 1-mW 2 / k(l+in) m=L j=l

- X + mw2L4/EI J+ 1 6 (x-xj (18)

1-mW 2 / k(l+in) j=1

If we factor both sides of equation (18) by 0n (x/L), integrate
from 0 to L with respect to x and make use of orthogonal property
of the normal modes:

i - JpL
(&4-&4)U n J AdA I g 'D mm(A.) IPn(Aj

n n I- p / r(l+in) m=l m m j n

= ~ ( X n ( A ) d A + , . (A.) (i9)

1-*t 4 / r(l+in) j=l n

Considering the first mode only, therefore:

rI) (Um/U) m (A.)

U1  
1 1

1[l- 4 /r(l+in)1 J ( (A)dA
L J

E4 ( 1 (A)dA 4 1 1 (A

= + j= (20)

I -(A)dA 4 (A)dA

and, since Un << U1 in the neighborhood of the fundamental

frequency, we may write as an approximation:

7



U1 Wc/ 4Ct + i-*WE/1i) 4 / r Cl + i 7j)

X~(E 4,y(/l)4
_1 (/ )4/r e (l+in)

X +- ()4)L 
/r(l+in)

-- 1 + (4/r) ) ( +in) jx x lW

(21)

1 1

wD (A)d& (22)
J0 0

and = ) Ij / J (A)dA (23)
j=l

and y = ( A()) / (I)dA (24)

j=1 0

It is seen that the response is now governed by two additional

parameters, namely a and a. In the special case where j--,

i.e. the dampers are uniformly distributed, a- .
Also, for

J=l and l(Aj)=l, i.e. the case where the single damper location

and the point at which the mode shape is normalized are identi-

cal, then S=y also. This particular case is of some importance

and analysis will be limited to this case. If =y, therefore:

8



= 4 eW 4/[l eA )4/re(l+in)]
X tij (_Wt1) 4-* e Wt ( )4/[l-* e t/li) 4/r e (l+in)]

1 + W1 (4-l) (25)

1* -E 1 ) _ e ) 4

1 l-*e/ / 1 )4/ re(l+in)

In this particularly simple case, therefore, the problem of
determining Iw/xl under shaker excitation reduces to that of
factoring the response under force excitation, given in equa-
tion (10) by i+( / i) 4(a-l). For the response determined in
this way, two peaks are again observed and it has been shown
[4, 5] that, for shaker excitation, the effective loss factor
ns is defined by the relationship:

s = - (26)

V 2_1

where A is the amplification factor i.e. the value of jW/Xj
at each resonance in the fundamental modes. Values of the
amplification factor A under shaker excitation are given in

Table II for a clamped-clamped beam along with values of Q

for Force excitation. Typical graphs of n defined as in

equation 25, against r e are shown in Figure 9. From these

graphs, the optimum loss factor corresponding to the point

of cross-over, can be read off and plotted against * e for

values of n. The points are plotted in Figure 5 and show

that the variation of ns with ip e is practically independent

of whether the beam is force or shaker excited.

On the other hand, graphs of (r e/*e )1/2(l+* e)+1/2(l+n2)+1/4

and w D/1w= (r' /*e )/2 against * e do show some differences,

as figures 10 8nd 11 show.

9



IV. COMPARISON OF EXACT AND APPROXIMATE ANALYSES

(i) Cantilever beam under force excitation

Previous investigations of tuned dampers on simple beams
have led to exact solutions of the Euler-Bernoulli Equation
for a beam with a tuned damper at an antinodal point. For
example, the response of a cantilever beam with a tuned damper
at the free end is described by Young [11] and Nashif [4].
Graphs of (EI/PL4) IWI against for a load of amplitude P at
the free end were obtained from the exact theory [41 and were
shown to consist of two resonance peaks in the vicinity of the
fundamental mode, as in the approximate theory. Graphs of ns
against r were drawn as for the approximate theory and some
of the results are tabulated in Table III for the optimally
tuned case where the two resonance peaks are of equal amplitude.
Since only one damper was considered for the exact theory [5]

J

of the cantilever beam, D2(, = 1 and, as in Table I,

1 
j=l

J 2(A)dA = 0.25. Therefore, for this case, 4*e = 4 and

re = 4r. From the values of r and * [4] therefore, r e and e

were derived and the values of n plotted against * e in Figure

5. It is seen that the computed points lie essentially along
the same line as given by the approximate theory.

Furthermore, the values of (wD/wl) (l+*e) 1/2(l+n2 )1/4,

when plotted against * e' lie on the same straight line as

given by the approximate theory, as in Figure 8.

(ii) Clamped-clamped beam under shaker excitation

A previous investigation [5] has given the exact theory
of a tuned damper at the center of a clamped-clamped beam on
the response under shaker excitation. Some of the results

J

are tabulated in Tables II and IV, Again I p2(A 1 and,
j=l

as in Table Is (p2(A)dA = 0.439. Thus, for this case,

*e = 2.086* and re = 2.086r. From the values of r and [51,

r e and * e were deduced and entered into Table V and graphs of

ns plotted against * e' as in Figure 5. It is seen that the

computed points lie along the same curve as all the others.

10



Values of wD1Iand (r/*4)1/2(l+*e)1/2(l+T2)1/4 when
plotted against V el lie along the same line as given by the
approximate theory in Figures 10 and 11 respectively.
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IV. EXPERIMENTAL VERIFICATION

(i) Cantilever beam with distributed tuned dampers under
shaker excitation

This investigation has previously been reported in
reference [9]. In brief, a cantilever beam with eleven
tuned dampers of the geometry shown in Figure 12 was vibrated
by an electrodynamic shaker. An accelerometer at the tip
was used to measure the response and the effective damping
deduced from the appropriate relationship, namely ns = i/V- .

The length of the beam was varied so as to obtain proper
tuning, i.e. to make the two response peaks, corresponding to
the fundamental mode of equal amplitude. The loss factor
of each damper was determined as in [9] and plotted in Figure
13. Comparison of the measured values of ns for n - 0.175
and 0.09 and various values of *e are shown in Figure 14.

It is seen that the agreement between theory and experi-
ment is good.

Another part of the investigation, not previously reported,
involved the verification of the relationship given in equation
(14) for the point of optimum tuning. The geometry of the
dampers used in this investigation is shown in Figure 15 A. The
density of the aluminum was 0.101 Lb/in 3 and that of the visco-
elastic material (LD-400) was 0.0522 Lb/in 3 . The total weight
of the resilient part of the damper up to the last half inch
in which the tip mass is situated is:

mD = 0.5 x 1 x 0.02 x 0.101 x 454

+ 0.0522 x 0.5 x 0.75 x T x 454

= 0.459 + 8.83T gMs

where T is the thickness of the viscoelastic material in inches
and the damper breadth is 0.5 inches. Now an additional mass
equal to the weight of the outermost half inch of the damper
beam must be included. This amounts to 0.5 x 0.5 x 0.02 x 0.101
x 454 x 0.23 gms. The total effective mass to be added to the
nominal mass mt at the free end in order to give the true mass
can be shown from [4] to be

m = mt + 0.23 - 0.236 mD gms

= mt + 0.338 + 2.08T gMs

Sm 1/2 should depend only on T/hD for this particular geometry
oi damper. Tests were carried out for these dampers, with

12



various masses mt at the free end under shaker excitation. Pn

accelerometer was placed at the free end and formed part of

the mass m . Response spectra showing the variation of the

accelerati8n at the free end with frequency for several input

accelerations at the clamped end were measured and the fre-

quency at which the output acceleration was greatest noted.
Some typical results are shown in Table V. Further tests, in

which the response at the tip was measured optically were also

carried out, and the results are given in Table VI. From these

results, a graph of wDm1/2 against T/h D was plotted as in
rigure 16. It is seen that the data do in6!eed collapse on tr

a sinale curve.

Since optimal tuning was obtained by varying the length

of the beam until the two response peaks corresponding to the

fundamental mode were of equal amplitude, the fundamental
natural frequency of the cantilever bear with no darpers (but

with the bolts used to hold the clamps in place) was rieasured

on the shaker and plotted against the beam length L, as in
Figure 17.

Table 1 of reference [9] gives the experimental data ob-

tained for the clamped-free beam with eleven distributed
dampers under shaker excitation. From the values of L for

optimal tuning, w can be read off Figure 16 and from the

values of m (referred to as "rn" in Table 1 of reference [9])
we can deduce WD* ience (wD/l) Vl+ e(l+ 2)1 4 can be calcu-

lated for the point of optimum tuning. This calculation is

carried out in Table VII.The values of (wD/Wl) /77 (l+n2)1/4

are plotted against * e in 
Figure 18.

(ii) Cantilever beam with tune6 damper at free end under
shaker excitation

This investigation has previously been reported in

reference [4]. In this experimental investigation, the

effective damping of the setup shown in Figure 19 was deter-

mined from the experimental amplification factor A under

shaker excitation by means of the relationship given in

Equation 26. The damper configuration used is shown in Figure 1 5 B.

The length of the beam was varied so as to obtain proper tuning

in the fundamental mode. For the point of optimum damping,
graphs of the optimum ns against * were plotted, as in refer-

ence [4]. These graphs are re-plotted as graphs of ns against

e for n = 0.22 and n = 0.8 in Figures 
20 and 21 respectively.

It is seen that the agreement between theory and experiment is

satisfactory. The loss factor n of each damper was determined

as in [4] and is plotted against T/hD in Figure 22.

13



Measurements of the natural frequencies of the dampers
for various tip masses mt were again made. The value of m D
is, now

mD = 0.5 x 1 x 0.02 x 0.101 x 454

+ 0.0522 x 0.5 x 1 x T x 454

+ 0.459 + 11.8T gms

where T is again the viscoelastic material thickness in inches.

m = m t + 0.23 + 0.236 mD

= mt + 0.338 + 2.78T gms

as for the dampers used for the beam with distributed tuned
dampers (case A). Again, graphs of w mn1/2 against T/hD were
plotted on the basis of measured valups of W for various m.
This data is given irl TableVIII. It is seen tRat the points
on the graph of w ml/ 2against T/hD in Figure 16 lie along the
same line as for Rhe dampers in case A, as would be expected.
The small additional amount of viscoelastic material near
the root of the cantilever damper contributes greatly to the
damping but not to the damped natural frequency.

From Table 4 of Reference [4], the values of the test
beam length L are obtained for the point of optimal tuning.
A graph of w1 against L was obtained experimentally for the
beam with a mass of 22 gms at the free end, and plotted in
Figure 23. This mass represented the metal stamp used to
ensure proper attachment of the cantilever damrper at the free
end of the test beam. Values of (w /w) i l+* (l+n 2 ) 1/4 were
then obtained from the test data, as iA Table IX, and plotted
against *e in Figure 18.

(iii) Clamped-clamped beam with tuned damrer at center
under shaker excitation

This investigation has previously been reported in
reference [5]. In this experimental investigation the effec-
tive damping was determined from the observed resonance ampli-
fication factor by the relationship ns = 1.32(A2_1)_1/2.
This setup is illustrated in rigure24, .25 The beam lenrth
was now fixed at 19.9 inches, with a fundamental frequency
of 90 cps. Graphs of ns against the mass ratio for several

14



values of n are given in reference [5] and are re-drawn as
graphs of ns against * e 

(= 2.5*) in Figures 20 and 21, for

n = 0.22 and 0.8 respectively. It is seen that the collapsed
data is in good agreement with the theory and with the data
for the cantilever beam.

The damper used in this investigation is illustrated
in Figure 15C. Measurements of the loss factors and natural
frequencies of the dampers were again made. The loss factor
measurements are plotted in Figure 22. The value of mD is
now:

mD = 0.101 x 1 x 0.063 x 454 £D

+ 0.0522 x 1 x ID x T x 454

= (2.83 + 23 .2 T)lD gms

where T is the thickness of the viscoelastic material in inches,
xD is the damper length in inches, the damper breadth is 1 inch.

Graphs of wDM I/ 2 XD3/2 were again plotted against T/h D, on the

basis of measured values of wD' in Figure 2f. This data is given
in Table X. The data for 2D = 2.2 inches, 2.7 inches and 3.7
inches all fall on the same curve.

From Table 2 of Reference [5], the values of the damper
mass m needed for optimal tuning are taken and values of

(wD/w , Vl+47 (l+n2 )./4 calculated as in TableXI. The data
is pltted i Figure 18.
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VT. CONCLUSIONS

A close approximation to the response of a single span
beam with any boundary conditions, having isolated tuned
viscoelastic daripers at arbitrary locaticns, under the action
of any harricnically varying loading has been derived. Fffec-
tive mass and stiffness parameters, and a system loss factor
are defined. Comparisons are made with an exact theory of the
response and damping of a clamped cantilever beam with a single
tuned damper and an isolated harmonic force at the free end
and a clamped-clamped, beam under shaker excitation, with a
tuned damper at the center.
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TABLE 1

STANDARD INTEGRALS FOP IOUS BEAr CONFICURPTONS

Boundary Conditions Clamped Pinned- Clamped- Clamped- Free-

- Free Pinned Pinned Clamped Free

1.875 3.142 3.927 4.730 4.730
1

1 4 12.36 97.4 237.7 500.6 500.6
1

A. 1.00 0.50 0.50 0.50 0.50J

€ (A.) 1.000 1.000 0.957 1.000 1.000

10 (A)dA 0.392 0.637 0.570 0.523 0.000

f I (A)dA 0.250 0.500 0.439 0.397 0.250
0 1

€2 (A )/J,2 (A)dA 4.000 2.000 2.086 2.519 1.479
1 0 1

I  (A)dA/Jl42 (A)dA 1.568 1.274 1.298 1.317 0.000
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TABLE II

THEORETICAL RESONANT AMPLIFICATION FACTORS AND RESONANT

PREQUENCIES FOR CLAMPED-CLAMPED BEAM (a-1 = 0.317)

r e Force Excitation Shaker Excitation
e n X Peak 1 Peak 2 Arplification A

74 ( / )4 Q (C/& )4 Peak 1I Peak 21 1

.1 ,2 .031 - - 76.0 1.05 - 101
.052 - - 27.9 1.09 - 37.6
.083 5.1 .66 7.5 1.24 6.15 10,5
.124 14.9 .80 2.35 1.61 18.7 3.56
.156 26,1 .83 - - 33.0 -

,1 .5 .031 - - 32.0 1.05 - 42.4

,052 - - 12.7 1.07 - 16.8

,083 5.2 .825 - - 6.5 -

.124 11.7 .85 - - 14.6

.154 18.2 .87 - - 23.2 -

.1 1 .031 - - 18,6 1.03 - 24.6
,052 - - 9,7 1,01 - 12.8

.083 10.0 .91 - - 12,7 -

.124 16.6 .89 - - 21.0 -

.154 22,6 .89 - - 29.1 -

.1 1.5 .031 14.8 1.01 - - 19.5 -

.0103 53.2 1.01 - - 70,2 -

,0206 23.5 1.01 - - 31.0 -

.0412 11.8 .99 - - 15,6 -

.062 11.9 .93 - - 15.4 -

,l 2 .0102 41.0 1.01 - - 54,2 -

.031 13,8 .99 - - 18.1 -

,072 17.3 .91 - - 22.2 -

.154 39,2 .91 - - 51.0 -

.2 .2 .072 - - 31.5 1.11 - 42.5

.103 - - 15,6 1.1.8 - 21.4

.134 3.9 .52 8.8 1.28 4.5 12.4

.165 5.9 .60 5,4 1.40 7.0 7.82

.206 9,5 .66 3.2 1,61 11.5 4,85

.268 16.2 .72 1.8 1.94 19.9 2,91
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TABLE II (CONT'D)

ee Force Excitation Shaker Excitation
e Peak 1 Peak 2 Amplification A

IT4 (/ ) Q (E/E )4 Peak 1 Peak 2

.2 .5 .072 13.2 1.09 - 17.80
.103 - 6.9 1.16 - 9.50
.134 3.2 .60 4.00 1.22 3.82 5.60
.165 4.35 .66 2.61 1.30 5.25 3.70
.268 10.3 .74 - - 12.7 -
.206 6.4 .70 7.82
.310 13.2 .76 - - 16.40

.2 1 .072 - - 7.60 1.05 - 10.1
.103 4.86 .99 - - 6.40 -
.134 4.99 .80 - - 6.25 -
.165 6.30 .78 - - 7.85 -
.310 14.7 .81 - - 18.40 -

.2 1.5 .0414 - - 11.8 1.03 - 15.7
.072 6.50 .97 - - 8.52 -
.103 6.05 .87 - - 7.72 -
.136 7.30 .83 - - 9.25 -

.2 2 .0414 9.70 1.01 - - 12.8 -
.072 6.80 .91 - - 8.75 -
.103 7.72 .85 - - 9.82 -
.134 9.70 .83 - - 12.20 -
.310 23.9 .85 - - 30.40 -

.4 .2 .103 1.75 .21 29.0 1.13 1.86 39.5
.155 2.46 .31 15.0 1.22 2.70 20.8
.206 3.41 .39 9.25 1.33 3.80 13.2
.258 4.76 .43 6.19 1.46 5.40 9.00
.310 6.45 .49 4.40 1.60 7.50 6.70
.392 9.70 .54 2.87 1.86 11.2 4.60

.4 .5 .103 1.50 .23 11.8 1.13 1.60 16.0
.155 1.90 .33 6.30 1.22 2.07 8.75
.206 2.47 .41 3.87 1.31 2.80 5.48
.258 3.20 .48 2.62 1.42 3.70 3.81
.310 4.06 .52 1.91 1.56 4.75 2.85

.4 1.0 .103 - - 6.20 1.09 - 8.40
.155 - - 3.52 1.12 - 4.76
.206 2.92 .58 - - 3.47 -
.258 3.74 .60 - - 4.47
.310 4.65 .62 - - 5.55
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TABLE II(CONT'D)

*e re Force Excitation Shaker Excitation
X Peak 1 Peak 2 Amplification A

4 Q (E/E )4 Q ( /E)4 Peak 1 Peak 21 1

.4 1.5 .072 - - 6.95 1.05 - 9.30
.103 4.55 1.03 - - 6.05 -
.155 3.26 .79 - - 4.10 -
.206 4.02 .66 - - 4.88 -

.4 2 .072 5.56 1.01 - - 7.20 -
.103 4.00 .93 - - 5.10 -
.155 4.08 .72 - - 4.95 -
.206 5.20 .68 - - 6.30 -
.310 7.85 .68 - - 9.55 -

.8 .2 .206 2.24 .206 16.4 1.26 2.38 23.0
.290 3.14 .247 10.1 1.38 3.37 14.5
.310 3.59 .268 8.60 1.42 3.90 12.4
.352 4.03 .289 7.20 1.51 4.33 10.6
.413 4.85 .330 5.65 1.61 5.36 8.60
.454 5.50 .330 4.90 1.68 6.10 7.52
.536 7.10 .370 3.81 1.85 7.90 6.07

.8 .5 .206 1.70 .186 6.20 1.26 1.80 8.70
.290 2.14 .269 3.89 1.38 2.30 5.60
.310 2.27 .288 3.50 1.42 2.47 5.10
.352 2.54 .309 2.92 1.49 2.78 4.30
.413 3.00 .330 2.31 1.61 3.32 3.50
.454 3.33 .351 2.01 1.67 3.70 3.07
.536 4.05 .392 1.58 1.84 4.55 2.52

.8 1 .206 1.74 .289 3.21 1.22 1.90 4.47
.290 2.20 .350 2.05 1.30 2.45 2.90
.310 2.32 .350 1.86 1.33 2.59 2.65
.352 2.58 .391 1.57 1.38 2.90 2.25
.413 3.03 .412 1.26 1.44 3.45 1.81

.8 1.5 .103 - - 5.21 1.09 - 7.02
.165 2.44 .99 - - 3.20 -

.206 2.05 .392 2.29 1.11 2.32 3.10

.290 2.65 .435 - - 3.03 -

.352 3.16 .455 - - 3.62 -

.413 3.72 .475 - - 4.30 -
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TABLE II (CONT'D)

r e Force Excitation Shaker Excitation

Peak 1 Peak 2 Amplification A

t4 Q ( /i )4 Q (E/C)4 Peak 1 Peak 2

.8 2 .103 - - 4.02 1.05 - 5.35

.165 2.44 .99 - - 3.20 -

.206 2.47 .475 - - 2.84 -

.290 3.25 .475 - - 3.75 -

.310 3.46 .495 - - 4.02 -

.352 3.90 .497 - - 4.52 -

.413 4.55 .497 - - 5.28 -
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TABLE III

THEORETICAL VALUES OF PArAMETEPS FOP OPTIMAL TUNINC

O' DPAPEPS ON CANTILEVE7 BEAM UNDEP FOPCE FXCITATION

Loss
actor Approxirate Theory Exact Theory

e e
n e ns re Te ns e

e jTe

0.2 0.10 0.170 0.088 .94 0.08 0.165 0.073 .96

0.5 0.204 0.083 .91 0.150 0.065 .90

1.0 0.135 0.062 .79 0.110 0.055 .83

2.0 0.076 0.040 .63 0.070 0.032 ,63

0.2 0.20 0.180 0.161 .90 0.20 0.185 0.161 .90

0,5 0.270 0.150 .87 - - -

1.0 0.250 0.112 .75 - - -

2.0 0.150 0.068 .58 - - -

0.2 0.40 0.190 0.290 .85 0.40 0.190 0.272 .83

0.5 0.380 0.252 .80 0.375 0.240 .78

1.0 0.420 0.200 .71 0.410 0.191 .69

2.0 0.285 0.124 .56 0.290 0.136 .58

0.2 0.60 0.190 0.372 .79 1.60 0.190 0.580 .60

0.5 0.390 0.315 .73 0.435 0.520 .57

1.0 0.480 0.237 .63 0.610 0.365 .68

2.0 0.410 0.150 .50 0.680 0.227 .38

0.2 0.80 0.210 0.445 .75 0.80 0.190 0.425 .73

015 0.400 0.382 .69 0.405 0.366 .68

1.0 0.510 0.282 .60 - - -

2,0 0.505 0.176 .47 0.470 0.178 .47
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TABLE IV

THEORETICAL VALUES OF PARAMETERS FOR OPTIMAL TUNING OF

DAMPERS ON CLAMPED-CLAMPED BEAM UNDER SHAKER EXCITATION

Loss Approximate Theory Exact Theory
Factor re Fe

Pe s e e e ?is T
0.2 0.10 0. 150 0.090 .950 0.10 0. 165 0.091 .955
0.5 0. 210 0.080 .895 0. 202 0.080 .895
1.0 0. 135 -- -- 0. 125 0.065 .868
1. 5 0.095 .. .. 0.095 0.050 .707
2.0 0.080 -- -- 0.083 0.038 .616

0. 2 0. 20 0. 185 0. 167 .917 0. 25 0. 180 0. 205 .910
0. 5 0. 310 0. 148 .862 0. 321 0. 170 .830
1.0 0. 280 0. 116 .760 0. 293 0. 140 .750
1. 5 0. 200 0.088 .663 0. 230 0. 115 .678
2.0 0. 160 0.070 . 590 0. 195 0.085 • 582

0.2 0.40 0. 190 0. 290 .856 0. 50 0. 187 0. 360 .850
0. 5 0. 380 0. 250 . 790 0. 374 0. 300 • 775
1.0 0.430 0. 190 .670 0.460 0. 240 .692
1. 5 0.400 0. 160 .632 0.416 0. 190 . 616
2.0 0. 350 0.111 . 528 0. 378 0. 150 •550

0.2 0.80 0. 200 0.490 .781 1.00 0. 188 0. 610 .782
0.5 0.420 0.410 .717 0.403 0.480 .692
1.0 -- -- 0. 580 0. 350 .590
1. 5 .-- -- 0. 600 0. 270 .520
2.0 0. 550 0. 200 . 500 0. 600 0. 220 .469
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